Online Test      LOGIN      SIGN UP
Forgot your password?
  • IBPS PO CWE Exam Quantitative Aptitude Study Material

Digitization help student to explore and study their academic courses online, as this gives them flexibility and scheduling their learning at their convenience. Kidsfront has prepared unique course material of Quantitative Aptitude Time and Work for IBPS PO CWE Exam student. This free online Quantitative Aptitude study material for IBPS PO CWE Exam will help students in learning and doing practice on Time and Work topic of IBPS PO CWE Exam Quantitative Aptitude. The study material on Time and Work, help IBPS PO CWE Exam Quantitative Aptitude students to learn every aspect of Time and Work and prepare themselves for exams by doing online test exercise for Time and Work, as their study progresses in class. Kidsfront provide unique pattern of learning Quantitative Aptitude with free online comprehensive study material and loads of IBPS PO CWE Exam Quantitative Aptitude Time and Work exercise prepared by the highly professionals team. Students can understand Time and Work concept easily and consolidate their learning by doing practice test on Time and Work regularly till they excel in Quantitative Aptitude Time and Work.


Time and Work
50 workers can complete a job in 6 days working 8 hours a day. If 40 workers are employed to complete the job in 20 days then the number of hours they should be working per day is

a) 4
b) 6
c) 9
d) 3



Answer
Solution
Correct Answer Is : 3
Solution Is :
A man worked 14 hours a day for the first 2 days, 12 hours a day for the neXt 3 days but did not work on the siXth day. Then on the average how much did he work in the first siX days ?

a) 10 hours 4 minutes
b) 9 hours 40 minutes
c) 10 hours 40 minutes
d) 11 hours 40 minutes



Answer
Solution
Correct Answer Is : 11 hours 40 minutes
Solution Is : Required average ( 2X14+3X12/6 ) hours =70/6 = 11 hours 40 minutes
Mohan engaged a servant on the condition that he would pay him ₹ 200 and a uniform after 10 days. The servant served only for 5 days and got ₹ 20 and a uniform. Find the price of the uniform.

a) ₹ 80
b) ₹ 120
c) ₹ 140
d) ₹ 160



Answer
Solution
Correct Answer Is : ₹ 160
Solution Is :
If 5 men or 9 women can do piece of work in 19days; 3 men and 6 women will do the same work in ----

a) 10days
b) 15days
c) 12days
d) 7days



Answer
Solution
Correct Answer Is : 15days
Solution Is :
A`s 2 days` work is equal to B`s 3 days` work. If A can complete the work in 8 days then to complete the work B will take

a) 14 days
b) 15 days
c) 16 days
d) 12 days



Answer
Solution
Correct Answer Is : 12 days
Solution Is : A`s 2 days work =B`s 3 days work
A complete a work in 8 days. A`s 1 day work =1/8 days
A`s 2 days work =(1/8)*2 = 1/4 work.
Now B`s 3 days work =1/4. B`s 1 day work =1/12.
Therefore B will take 12 days to complete the work.
4 men and 6 women complete a work in 8 days. 2 men and 9 women also complete in 8 days in which. The number of days in which 18 women complete the work is :

a) 4 2/3days
b) 5 2/3days
c) 4 1/3days
d) 5 1/3days



Answer
Solution
Correct Answer Is : 5 1/3days
Solution Is : Now, M1d1 = M2d2
⇒(4M + 6W) *8 = (2M + 9W) * 8
⇒ 4M + 6W = 2M + 9W
⇒2M = 3W ⇒ 1M =3/2 W. Now 4M+6W
=(4*3/2)W+6W =12W.
Here 12W complete a work in 8 days.
So, let 18 women complete a work in x days
12W *8 = 18W * x x=(12*8)/18 =16/3 days= 5 1/3 days
If 4 men or 8 women can do a piece of work in 15 days, in how many days can 6 men and 12 women do the same piece of work

a) 45 days
b) 20 days
c) 15 days
d) 30 days



Answer
Correct Answer Is : 15 days
Solution Is :
If A, B and C can complete a work in 6 days. If A can work twice faster than B and thrice faster than C, then the number of days C alone can complete the work is :

a) 33 days
b) 44 days
c) 22 days
d) 11 days



Answer
Solution
Correct Answer Is : 33 days
Solution Is : Let time taken by A = x days
therefore,time taken by B=2x days
time taken by C = 3x days
According to the
question,(1/x)+(1/2x)+(1/3x)=1/6
⇒(6+3+2)/6x=1/6
6x=6*11
x=11
therfore tima taken by C alone = 3x=3*11=33 days.
A and B together can do a .piece of work in 30 days. B and C together can do it in 20 days. A starts the work and works on it for 5 days, then B takes up and works for 15 days. Finally C finishes the work in 18 days. The number of days in which C alone can do the work when doing it separately is :

a) 120 days
b) 24 days
c) 60 days
d) 40 days



Answer
Solution
Correct Answer Is : 24 days
Solution Is : Let C can complete the work in x days.
Therefore, B`s one days work = (1/20) - (1/x)
⇒(5/x)-(1/12)+(15/20)-(15/x)+(18/x)=1
ans A`s one days work
=((2-3)/60) +(1/x) =(1/x)-(1/60)
⇒(5/x)-(15/x)+(18/x)=1+(1/12)-(3/4)
⇒(5-15+18)/x=(12+1-9)/12
According to the question, 5(1/x-1/60)15(1/20-1/x)+18/x=1
⇒8/x=1/3
⇒x=24 days.
A, B and C can do a piece of work in 24, 30 and 40 days respectively. They began the work together but C left 4 days before completion of the work. In how many days was the work done ?

a) 13
b) 12
c) 14
d) 11



Answer
Solution
Correct Answer Is : 11
Solution Is :
PREVIOUS

Preparation for Exams

script type="text/javascript">